Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 265-271, 2024.
Article in Chinese | WPRIM | ID: wpr-1006292

ABSTRACT

Acute pancreatitis (AP) is a common clinical acute abdominal disease, which is characterized by acute onset, rapid development, severe disease, many complications, and high mortality rate. It can progress to severe AP (SAP) if not treated promptly in the early stage. The pathogenesis of AP is complex and involves multiple cellular and molecular levels. It is now clear that oxidative stress and reactive oxygen species (ROS) production are involved in the physiopathological process of AP, which is associated with a low quantity and activity of antioxidant enzymes in pancreatic cells. Nuclear factor E2-related factor 2 (Nrf2) serves as the ''golden key'' to maintain redox homeostasis in tissue cells and constitutes an important signaling pathway for antioxidant response and inflammation in vivo by collaborating with downstream antioxidant enzymes such as heme oxygenase-1 (HO-1). Traditional Chinese medicine has unique efficacy in treating diseases due to its multi-component, multi-target, multi-drug delivery, and multi-formulation characteristics. Based on the concept of synergy between traditional Chinese and Western medicine, traditional Chinese medicine is becoming a new craze in the treatment of AP. The level of oxidative stress and Nrf2/HO-1 signaling pathway in AP pancreatic tissue are in a dynamic change process, and the intervention of traditional Chinese medicine can clean ROS production, affect the inflammatory pathway, and reduce oxidative stress damage, so as to protect against pancreatic injury. This suggests that this pathway plays an important role in AP. This article reviews the recent literature on the regulation of the Nrf2/HO-1 signaling pathway by traditional Chinese medicine for AP and summarizes that the monomers of traditional Chinese medicine targeting this pathway are mainly heat-clearing and detoxifying, blood-activating and blood-stasis-removing, and Qi benefiting and middle warming, and the compounds of traditional Chinese medicine include Yinchenhao Decoction and QingYi Ⅱ, so as to provide a new direction for the prevention and treatment of AP and further drug development.

2.
Vive (El Alto) ; 6(18): 736-747, dic. 2023. ilus
Article in Spanish | LILACS | ID: biblio-1530582

ABSTRACT

Los bajos niveles de hemoglobina se definen como una concentración baja de hemoglobina en la sangre. La activad metabólica cerebral está vinculada con el desarrollo psicomotor. El desarrollo psicomotor durante la infancia se desarrolla a partir de los reflejos innatos, se organizan en esquemas de conducta, se internalizan durante el segundo año de vida como modelos de pensamiento. En Perú, se contabilizan el 50.99% de los niños con bajos niveles de concentración de hemoglobina en menores de 3 años. Objetivo. Identificar la relación entre la anemia y el desarrollo de la psicomotricidad en la primera infancia. Materiales y Métodos. Para evaluar los niveles de hemoglobina se empleó el método de la azidametahemoglobina, con un hemoglobinómetro, y para evaluar el desarrollo psicomotor se empleó la escala del desarrollo psicomotor. En el estudio participaron 32 niños de 6 a 24 meses de edad. Resultados. El 40,6% presenta niveles de hemoglobina entre 14,2 - 17.2 g/dl, el 31,3% presenta niveles de hemoglobina entre 13.2 -14.1 g/dl seguido del 25,0% que presenta niveles de hemoglobina entre 10,2 -13.1 g/dl y el 3.1% presenta niveles de hemoglobina <10.2 g/dl; respecto al desarrollo psicomotor expresados en coeficiente de desarrollo se evidencia que el 59.4% de niños muestran un desarrollo normal seguido del 31.3% de niños que presenta un desarrollo en riesgo y 9.4% en retraso. Conclusiones. El coeficiente de desarrollo del niño(a) se encontró que la mayoría tiene un desarrollo psicomotor normal seguido de riesgo y de retraso, a pesar que mayoría tiene un coeficiente de desarrollo normal


Low hemoglobin levels are defined as a low hemoglobin concentration in the blood. Brain metabolic activity is linked to psychomotor development. Psychomotor development during infancy develops from innate reflexes, which are organized in behavioral schemes and internalized during the second year of life as thought models. In Peru, 50.99% of children under 3 years of age have low hemoglobin concentration levels. Objective. To identify the relationship between anemia and psychomotor development in early childhood. Materials and Methods. To evaluate hemoglobin levels, the azidametahemoglobin method was used, with a hemoglobinmeter, and to evaluate psychomotor development the psychomotor development scale was used. Thirty-two children aged 6 to 24 months participated in the study. Results. 40.6% presented hemoglobin levels between 14.2 - 17.2 g/dl, 31.3% presented hemoglobin levels between 13.2 -14.1 g/dl followed by 25.0% presenting hemoglobin levels between 10.2 -13.1 g/dl and 3.1% presented hemoglobin levels <10. 2 g/dl; with respect to psychomotor development expressed in development coefficient, 59.4% of children show normal development followed by 31.3% of children with development at risk and 9.4% with delayed development. Conclusions. The development coefficient of the child showed that most of the children have a normal psychomotor development followed by at risk and retardation, although most of them have a normal development coefficient.


Níveis baixos de hemoglobina são definidos como uma baixa concentração de hemoglobina no sangue. A atividade metabólica do cérebro está ligada ao desenvolvimento psicomotor. O desenvolvimento psicomotor durante a infância se desenvolve a partir de reflexos inatos, que são organizados em padrões de comportamento e internalizados durante o segundo ano de vida como padrões de pensamento. No Peru, 50,99% das crianças com menos de 3 anos de idade têm baixas concentrações de hemoglobina. Objetivo. Identificar a relação entre a anemia e o desenvolvimento psicomotor na primeira infância. Materiais e métodos. Para avaliar os níveis de hemoglobina, foi usado o método da azidameta-hemoglobina, com um hemoglobinômetro portátil HemoCue® Hb 201+ e, para avaliar o desenvolvimento psicomotor, foi usada a escala de desenvolvimento psicomotor. Trinta e duas crianças com idade entre 6 e 24 meses participaram do estudo. Resultados. 40,6% tinham níveis de hemoglobina entre 14,2 - 17,2 g/dl, 31,3% tinham níveis de hemoglobina entre 13,2 -14,1 g/dl, seguidos por 25,0% com níveis de hemoglobina entre 10,2 -13,1 g/dl e 3,1% com níveis de hemoglobina <10. 2 g/dl; com relação ao desenvolvimento psicomotor expresso em coeficiente de desenvolvimento, é evidente que 59,4% das crianças apresentam um desenvolvimento normal, seguido por 31,3% de crianças que apresentam um desenvolvimento em risco e 9,4% em atraso. Conclusões. O coeficiente de desenvolvimento infantil mostrou que a maioria das crianças tem um desenvolvimento psicomotor normal, seguido por risco e atraso, embora a maioria delas tenha um coeficiente de desenvolvimento normal.


Subject(s)
Humans , Infant , Psychomotor Performance , Anemia
3.
Acta Pharmaceutica Sinica ; (12): 360-370, 2023.
Article in Chinese | WPRIM | ID: wpr-965699

ABSTRACT

Carnosic acid (CA) is the main phenolic diterpenoid active ingredient in plants such as rosemary and sage, and has antiviral, antioxidant, anti-inflammatory effects and so on, however, its antiviral activity against influenza virus infections was not reported. In this study, antiviral activities against influenza A virus infections of three main bioactive ingredients from rosemary, including rosmarinic acid, CA and ursolic acid, were evaluated using virus titer titration assay, and CA showed remarkable inhibition on influenza H5N1 replication in A549 cells. The antiviral activity of CA was further confirmed and its mechanism of action was investigated using the indirect immunofluorescence assay (IFA), Western blot and real-time fluorescence quantification polymerase chain reaction (qRT-PCR). The results showed that the 50% effective concentration (EC50) of CA against influenza H5N1 in A549 cells and MDCK cells were 4.30 and 3.64 μmol·L-1, respectively. Meanwhile, CA also showed inhibition on influenza virus 2009panH1N1 (EC50: 10.1 μmol·L-1) and H3N2 (EC50: 12.8 μmol·L-1) replications in A549 cells. Mechanistic studies showed that antiviral activity of CA is related to its induction of heme oxygenase-1 (HO-1) in A549 cells and suppression on production of reactive oxygen in H5N1-infected cells.

4.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 389-399, 2023.
Article in Chinese | WPRIM | ID: wpr-964433

ABSTRACT

Objective@# To explore the effects of red LED light mediated by the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (KEAP1-NRF2/HO-1) pathway on osteogenic differentiation and oxidative stress damage of human periodontal ligament stem cells (hPDLSCs) induced by high glucose, which provides a basis for the application of red light-emitting diode (LED) light in cell antioxidative damage.@*Methods@#hPDLSCs were identified by flow cytometric analysis, alkaline phosphatase (ALP) staining and Alizarin red-S staining; hPDLSCs were pretreated in a high glucose environment for 48 hours and irradiated with 1, 3, or 5 J/cm2 red LED light. A CCK-8 assay was performed to choose the radiant exposure that had the strongest effect on promoting the cell proliferation rate for subsequent experiments. hPDLSCs were divided into a control group, a high glucose group and a high glucose+light exposure group. ALP staining, ALP activity, Alizarin red-S staining and quantitative calcified nodules were used to detect the osteogenic differentiation of hPDLSCs; qRT-PCR and Western blot were used to detect the gene and protein expression levels of ALP, runt-related transcription factor 2 (RUNX2) and osterix (OSX); the relative mRNA expression levels of antioxidant enzyme-related genes superoxide dismutase 2 (SOD2) and catalase (CAT) in hPDLSCs were detected by qRT-PCR; reactive oxygen species (ROS) levels were detected by fluorescence microscopy and flow cytometry; the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in cell supernatants were detected by ELISA; the NRF2-specific inhibitor ML385 was used to inhibit the NRF2 pathway; ALP staining and ALP activity were used to detect the markers of early osteogenic differentiation; qRT-PCR was used to detect the gene expression of ALP, RUNX2 and OSX; and the protein expression levels of KEAP1, NRF2 and HO-1 were detected by Western blot.@*Results @# Identified, and irradiant exposure of 5 J/cm2 was chosen for subsequent experiments. Red LED light irradiation (5 J/cm2) improved the osteogenic differentiation of hPDLSCs induced by high glucose (P<0.05), increased the mRNA and protein levels of ALP, RUNX2 and OSX (P<0.05), upregulated the mRNA expression levels of SOD2 and CAT (P<0.05), reduced the levels of ROS (P<0.05), and reduced TNF-α and IL-1β levels in the cell supernatants (P<0.05). When ML385 was added to inhibit the NRF2 pathway, the ALP activity of cells was decreased (P<0.05); the gene expression levels of ALP, RUNX2 and OSX were downregulated (P<0.05); the protein level of KEAP1 was upregulated (P<0.05); and the protein levels of NRF2 and HO-1 were downregulated (P<0.05)@*Conclusion@#Red LED light may promote the proliferation and osteoblastic differentiation of hPDLSCs induced by high glucose through the KEAP1-NRF2/HO-1 pathway and reduce the oxidative stress damage to hPDLSCs induced by high glucose.

5.
China Journal of Chinese Materia Medica ; (24): 2176-2183, 2023.
Article in Chinese | WPRIM | ID: wpr-981348

ABSTRACT

To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.


Subject(s)
Humans , Ferroptosis , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Sincalide/pharmacology , Signal Transduction , Epithelial Cells/metabolism , Glutathione
6.
Chinese Journal of Biotechnology ; (12): 1119-1130, 2023.
Article in Chinese | WPRIM | ID: wpr-970427

ABSTRACT

Heme, which exists widely in living organisms, is a porphyrin compound with a variety of physiological functions. Bacillus amyloliquefaciens is an important industrial strain with the characteristics of easy cultivation and strong ability for expression and secretion of proteins. In order to screen the optimal starting strain for heme synthesis, the laboratory preserved strains were screened with and without addition of 5-aminolevulinic acid (ALA). There was no significant difference in the heme production of strains BA, BAΔ6 and BAΔ6ΔsigF. However, upon addition of ALA, the heme titer and specific heme production of strain BAΔ6ΔsigF were the highest, reaching 200.77 μmol/L and 615.70 μmol/(L·g DCW), respectively. Subsequently, the hemX gene (encoding the cytochrome assembly protein HemX) of strain BAΔ6ΔsigF was knocked out to explore its role in heme synthesis. It was found that the fermentation broth of the knockout strain turned red, while the growth was not significantly affected. The highest ALA concentration in flask fermentation reached 82.13 mg/L at 12 h, which was slightly higher than that of the control 75.11 mg/L. When ALA was not added, the heme titer and specific heme production were 1.99 times and 1.45 times that of the control, respectively. After adding ALA, the heme titer and specific heme production were 2.08 times and 1.72 times higher than that of the control, respectively. Real-time quantitative fluorescent PCR showed that the expressions of hemA, hemL, hemB, hemC, hemD, and hemQ genes at transcription level were up-regulated. We demonstrated that deletion of hemX gene can improve the production of heme, which may facilitate future development of heme-producing strain.


Subject(s)
Gene Deletion , Bacillus amyloliquefaciens/metabolism , Aminolevulinic Acid/metabolism , Heme/metabolism , Fermentation
7.
Journal of Clinical Hepatology ; (12): 1708-1713, 2023.
Article in Chinese | WPRIM | ID: wpr-978844

ABSTRACT

The incidence rate of alcoholic liver disease (ALD) is increasing year by year China, and there is a gradual increase in disease burden among Chinese people. Oxidative stress response in hepatocytes is an important pathogenic mechanism of ALD. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway is an important endogenous anti-oxidative stress pathway in the body, and Nrf2 is activated in response to oxidative stress and exerts its transcriptional activity to induce high HO-1 expression. HO-1 is an important oxidative stress response protein and plays a role in anti-inflammation, anti- oxidation, and cell apoptosis regulation together with heme hydrolysis products (bilirubin, carbon monoxide, and iron). This article reviews the research advances in the role of the Nrf2/HO-1 signaling pathway in ALD in recent years, so as to find a theoretical basis for the development and progression of ALD and an entry point for treatment.

8.
Acta Pharmaceutica Sinica ; (12): 891-898, 2023.
Article in Chinese | WPRIM | ID: wpr-978765

ABSTRACT

The bactericidal mechanism of carbon monoxide (CO) and the feasibility of CO-releasing molecules as anti-infective drugs were summarized by consulting scientific literature, combined with our own research work. Anaerobic bacteria are usually tolerant to high concentration of CO, and some can even grow with CO as sole carbon or energy source, but most pathogenic bacteria are sensitive to CO. In view of the difficulty of gaseous CO in controlling the applying dose and the action site, CO release molecules were synthesized. CO release molecules not only have higher bactericidal activities against common pathogenic bacteria than gaseous CO, but also have the ability to kill antibiotics-resistant bacteria and destroy their biofilms. CO mainly binds with heme-Fe2+ in cells, interrupting the electron transfer of respiration chains, which would result in the generation of reactive oxygen species. CO can also disturb intracellular ion balance, which further triggers free radical reactions. Due to its diverse acting targets, uneasy to induce drug resistance, and synergistic effect with other antibiotics, CO is expected to be the next generation of anti-infection drugs.

9.
Acta Pharmaceutica Sinica ; (12): 1596-1602, 2023.
Article in Chinese | WPRIM | ID: wpr-978712

ABSTRACT

The purpose of this study is to investigate the effect of Reduning injection (RI) on influenza A virus (IAV) and its mechanism. We evaluated the cytotoxicity of RI in A549 and MDCK cells by cell counting kit-8 (CCK-8) assay. Western blot and cytopathic effect (CPE) assays were applied to test the effects of RI on viral protein, CPE and virus virulence to evaluate its inhibitory effect. The proteins level of heme oxygenase 1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), phosphorylation of P38 mitogen-activated protein kinases (MAPK) and extracellular signal-regulated kinases 1/2 (ERK1/2) were detected by Western blot. Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the RNA expression of interferon-α/β (IFN-α/β). The relative luciferase reporter assay was used to analyze the promoter activity and transcriptional regulation of Nrf2. The results indicated that RI inhibited IAV-induced MDCK cytopathies in a dose-dependent manner, decreased M2 protein of influenza virus and viral titer, indicating that it has definite effect on inhibiting IAV. RI promotes the phosphorylation of P38 MAPK and ERK1/2, activates the activity of Nrf2 nuclear transcription factor, increases the expression of Nrf2 protein in the nucleus, thus up-regulates the expression of HO-1 protein, and ultimately increases the IFN-α/β mRNA level. In summary, our results demonstrated that RI inhibits the replication of IAV by activating MAPK/Nrf2/HO-1 signaling pathway, revealing a new mechanism of RI against influenza virus, and providing theoretical basis for clinical treatment of influenza virus.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 144-153, 2023.
Article in Chinese | WPRIM | ID: wpr-978460

ABSTRACT

ObjectiveTo investigate the effect of Glycyrrhizae Radix et Rhizoma (GR)-containing serum on lipopolysaccharide (LPS)-induced inflammation in human colon epithelial adenocarcinoma cells (Caco2) based on inhibition of ferroptosis by the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. MethodCaco2 cells were divided into a normal group, a model group (LPS, 200 μg·L-1), low-, medium-, and high-dose GR-containing serum groups (5%, 10%, 20%), and a ferroptosis inhibitor group (3-amino-4-cyclohexylamino-benzoic acid ethyl ester, Fer-1, 10 μmol·L-1). The cells in the normal group were cultured normally, while those in other groups underwent the induction of an inflammation model. The cells in the low-, medium-, and high-dose GR-containing serum groups were treated with 5%, 10%, and 20% GR-containing serum for 24 hours, respectively, and the cells in the ferroptosis inhibitor group were treated with Fer-1 for 24 hours. Transmission electron microscopy was used to observe mitochondrial morphology in each group. Flow cytometry was used to detect intracellular Fe2+ levels. Microplate assays were performed to measure superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels. Enzyme-linked immunosorbent assay (ELISA) was used to measure interleukin-1β (IL-1β), IL-6, IL-10, and tumor necrosis factor-α (TNF-α) levels. Western blot was used to measure the expression levels of Nrf2, HO-1, ferritin heavy chain 1 (FTH1), and glutathione peroxidase 4 (GSH-Px4) proteins. Small interfering RNA (siRNA) was used to investigate the role of Nrf2 in ferroptosis regulation. The cells after interference were divided into a negative control (NC) group, a Si-Nrf2 group, a GR-containing serum (20%) + Si-Nrf2 group, and a GR-containing serum (20%) + NC group. Microplate assays were performed to measure MDA, SOD, and GSH-Px levels, and Western blot was used to measure the expression levels of Nrf2, HO-1, FTH1, and GSH-Px4 proteins. ResultCompared with the normal group, the model group showed mitochondrial contraction, increased mitochondrial membrane thickness, and smaller mitochondrial morphology, increased Fe2+ content (P<0.01), blunted SOD activity (P<0.01), decreased GSH-Px expression (P<0.01), increased MDA content (P<0.01), reduced expression levels of Nrf2 and HO-1 (P<0.05), reduced FTH1 expression (P<0.01), and down-regulated GSH-Px4 expression (P<0.01). In the GR-containing serum groups, the medium- and high-dose groups showed a significant decrease in Fe2+ content (P<0.01), potentiated SOD and GSH-Px activities (P<0.01), and decreased MDA levels (P<0.01). The high-dose group showed a significant increase in Nrf2 expression (P<0.05), and the medium-dose group showed increased expression of HO-1 and GSH-Px4 proteins (P<0.05). The expression levels of FTH1 significantly increased in the low-, medium-, and high-dose groups (P<0.01). The study on mechanism revealed that compared with the NC group, the cells transfected with Nrf2 siRNA showed increased MDA content (P<0.01), blunted SOD activity (P<0.01), decreased GSH-Px activity (P<0.01), decreased expression of Nrf2 and HO-1 (P<0.01), and reduced levels of FTH1 and GSH-Px4 proteins (P<0.01). Compared with the Si-Nrf2 group, the cells treated with GR-containing serum showed a decrease in MDA content (P<0.01), an increase in SOD activity (P<0.01), an increase in GSH-Px activity (P<0.01), increased expression of Nrf2 and FTH1 proteins (P<0.05), and higher expression levels of HO-1 and GSH-Px4 proteins (P<0.01). ConclusionGR-containing serum can reduce the inflammatory cytokines and oxidative stress levels in LPS-induced Caco2 cells. Its mechanism is related to the promotion of Nrf2/HO-1 signaling pathway expression, alleviating intracellular lipid peroxidation and inhibiting ferroptosis.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 248-255, 2023.
Article in Chinese | WPRIM | ID: wpr-975178

ABSTRACT

Myocardial infarction (MI) is a common cardiovascular disease in clinical practice and one of the main causes of cardiovascular mortality. Its pathogenesis is complex and associated with oxidative stress reactions. Nuclear factor E2-related factor 2 (Nrf2) is a key factor in regulating oxidative stress reactions. It can regulate the expression of heme oxygenase-1 (HO-1), playing a role in maintaining the oxidative-reductive homeostasis in the body. During the course of MI, the biological activity and levels of Nrf2 and HO-1 decrease, leading to weakened tissue antioxidant and anti-inflammatory capabilities, endothelial damage in myocardial blood vessels, release of vascular cell adhesion factors, and impaired endothelial function. In recent years, many basic research studies have explored the role and mechanisms of traditional Chinese medicine (TCM) in treating MI by modulating the Nrf2/HO-1 signaling pathway. The results have indicated that the Nrf2/HO-1 signaling pathway is an important potential target for TCM in the treatment of MI. This article reviewed the mechanism of the Nrf2/HO-1 signaling pathway in MI and the research progress of TCM in targeting and regulating this pathway, aiming to provide a theoretical basis for the prevention and treatment of MI and further drug development.

12.
Organ Transplantation ; (6): 449-2023.
Article in Chinese | WPRIM | ID: wpr-972937

ABSTRACT

Liver transplantation is a vital treatment for end-stage liver disease. However, the shortage of donor livers has limited the development of liver transplantation. How to expand the source of donor livers has become a challenge in the academic community. In recent years, the proportion of donors with non-alcoholic fatty liver disease (NAFLD) has been increased. Rational use of steatotic donor livers is a feasible approach to expand the donor pool. Cold ischemia injury during donor liver preservation before liver transplantation increases the risk of postoperative organ dysfunction. Therefore, it is of significance to unravel the mechanism and intervention measures of cold ischemia injury of steatotic donor livers. Cold ischemia injury of steatotic donor livers is characterized as the damage of mitochondria, lysosomes and endoplasmic reticulum at the organelle level, and up-regulated expression of adenosine monphosphate activated protein kinase (AMPK), aldehyde dehydrogenase 2 (ALDH2) and heme oxygenase (HO)-1 at the protein level. In this article, the research progresses on cold ischemia injury of steatotic donor livers and relevant intervention measures were reviewed.

13.
Acta Pharmaceutica Sinica ; (12): 2250-2259, 2023.
Article in Chinese | WPRIM | ID: wpr-999146

ABSTRACT

Small molecule fluorescent probes have gained widespread attention for their advantages of high selectivity, sensitivity, and easy to operate, and have played a critical role in the detection of various species. They have also demonstrated great potential in the field of biomedical research. Iron, as the most abundant transition metal in the human body, plays a vital role in many physiological functions. Due to the influence of the reductive microenvironment of cell, ferrous ion (Fe2+) is the main component of labile iron in living cells. Heme, consisting of Fe2+ and protoporphyrin IX, is one of the main signaling molecules that wrap biological iron in the human body, and also participates in many physiological and pathological processes. Therefore, the development of small molecule fluorescent probes for detecting Fe2+ and heme as effective monitoring tools will help to further understand their pathological and physiological functions, with potential applications in other fields. This review summarizes the research progress of small molecule fluorescent probes for Fe2+ and heme detection in recent years, and provides insights into future directions for their development.

14.
Journal of Clinical Hepatology ; (12): 2643-2650, 2023.
Article in Chinese | WPRIM | ID: wpr-998821

ABSTRACT

‍ ObjectiveTo investigate the protective effect of safranal against sepsis-related liver injury (SRLI) induced by lipopolysaccharide (LPS) in mice and its mechanism. MethodsA total of 32 experimental male C57BL/6 mice were divided into control group, single drug group, model group, and treatment group using the simple random method, with 8 mice in each group. The mice in the single drug group and the treatment group were intraperitoneally injected with safranal (60 mg/kg) for 7 days of pretreatment, and the mice in the model group and the treatment group were intraperitoneally injected with LPS (10 mg/kg) to induce acute liver injury. The activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured; HE staining was used to observe liver tissue sections; immunohistochemistry was used to analyze the expression of the downstream protein heme oxygenase-1 (HO-1) in the signal pathway; TUNEL was used to analyze the apoptosis of hepatocytes; Western blot was used to measure the expression of total proteins (nuclear factor erythroid 2-related factor 2 [Nrf-2] and HO-1) in liver tissue. The human liver cell line L02 was pretreated with safranal (100 μmol/L), followed by induction of acute hepatocellular injury with LPS (100 ng/mL), and DCFH-DA fluorescent labeling was used to detect reactive oxygen species (ROS). ResultsAfter safranal pretreatment, the treatment group had significantly lower levels of ALT and AST than the model group (both P<0.001), with a relatively intact pseudolobular structure and a smaller necrotic area in the liver. Compared with the model group, the treatment group had significant increases in the expression levels of Nrf2 and HO-1 in liver tissue after safranal+LPS treatment (both P<0.001), and immunohistochemistry showed that safranal pretreatment increased the number of HO-1-positive cells. In the cell model of LPS-induced acute liver injury, the treatment group had a significant reduction in the production of ROS compared with the model group. ConclusionSafranal can exert a protective effect against SRLI induced by LPS in mice through the Nrf2/HO-1 pathway.

15.
International Eye Science ; (12): 1865-1869, 2023.
Article in Chinese | WPRIM | ID: wpr-996900

ABSTRACT

AIM:To analyze the correlation between serum nesfatin-1, apelin and heme oxygenase-1(HO-1)levels and the severity of diabetic retinopathy(DR).METHODS:Totally 100 patients with type 2 diabetes mellitus(T2DM)who were admitted to the hospital from September 2020 to September 2022 were selected. They were divided into non-DR(NDR)group(35 cases), nonproliferative DR(NPDR)group(33 cases)and proliferative DR(PDR)group(32 cases)according to the condition of fundus lesions. Another 30 healthy individuals who received health check-ups in the hospital during the same period were selected as the control group. Serum nesfatin-1, apelin and HO-1 levels in each group were detected, and panretinal ischemia index(ISI)was evaluated.RESULTS:Serum nesfatin-1 and HO-1 levels in the T2DM patients were lower, and apelin level was higher as compared with the control group. The levels of nesfatin-1 and HO-1 in the PDR group were the lowest, while the apelin level was the highest. Panretinal ISI in the PDR group was higher than that in the NPDR group(4.56±0.57 vs. 2.05±0.29, P&#x0026;#x003C;0.05). Correlation analysis found that serum nesfatin-1 and HO-1 levels were negatively correlated with panretinal ISI in patients with DR, while apelin level was positively correlated with panretinal ISI. The receiver operator characteristic(ROC)curve analysis found that the areas under the curves of serum nesfatin-1, apelin and HO-1 for predicting PDR were 0.842, 0.833 and 0.807 respectively.CONCLUSION:Serum nesfatin-1, apelin and HO-1 levels are closely related to the severity of DR. Dynamic monitoring of serum nesfatin-1, apelin and HO-1 levels is important for the early detection of PDR.

16.
Chinese Journal of Ocular Fundus Diseases ; (6): 324-329, 2023.
Article in Chinese | WPRIM | ID: wpr-995632

ABSTRACT

Objective:To observe the effect of high expression of polypyrimidine tract-binding protein-associated splicing factor (PSF) on low concentration of 4-hydroxynonenal (4-HNE) induced human retinal microvascular endothelial cells (HRMECs), and explore the possible mechanism.Methods:The HRMECs cultured in vitro were divided into 4-HNE treated group, PSF overexpression group combined with 4-HNE group (PSF+4-HNE group), PSF overexpression+ML385 treatment combined with 4-HNE group (PSF+ML385+4-HNE group), and 4-HNE induced PSF overexpression group with LY294002 pretreatment (LY294002+4-HNE+PSF group). Cell culture medium containing 10 μmmol/L 4-HNE was added into 4-HNE treatment group, PSF+4-HNE group, PSF+ML385+4-HNE group for 12 hours to stimulate oxidative stress. 1.0 μg of pcDNA-PSF eukaryotic expression plasmid were transfected into PSF+4-HNE group and PSF+ML385+4-HNE group to achieve the overexpression of PSF. Also cells were pretreated with ML385 (5 μmol/L) for 48 hours in the PSF+ML385+4-HNE group, meanwhile within the LY294002+4-HNE+PSF group, after pretreatment with LY294002, cells were treated with plasmid transfection and 4-HNE induction. Transwell detects the migration ability of PSF to HRMECs. The effect of PSF on the lumen formation of HRMECs was detected by using Matrigel in vitro three-dimensional molding method. Flow cytometer was used to detect the effect of PSF overexpression on reactive oxygen (ROS) level in HRMECs. Protein immunoblotting was used to detect the relative expression of PSF, nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) protein, and phosphoserine threonine protein kinase (pAkt) protein. The comparison between the two groups was performed using a t-test. Results:The number of live cells, migrating cells, and intact lumen formation in the 4-HNE treatment group and the PSF+4-HNE group were 1.70±0.06, 0.80±0.13, 24.00±0.58, 10.00±0.67, and 725.00±5.77, 318.7±12.13, respectively. There were significant differences in the number of live cells, migrating cells, and intact lumen formation between the two groups ( t=12.311, 15.643, 17.346; P<0.001). The results of flow cytometry showed that the ROS levels in the 4-HNE treatment group, PSF+4-HNE group, and PSF+ML385+4-HNE group were 816.70±16.67, 416.70±15.44, and 783.30±17.41, respectively. There were statistically significant differences between the two groups ( t=16.311, 14.833, 18.442; P<0.001). Western blot analysis showed that the relative expression levels of pAkt, Nrf2, and HO-1 proteins in HRMECs in the 4-HNE treatment group, PSF+4-HNE group and LY294002+4-HNE+PSF group were 0.08±0.01, 0.57±0.04, 0.35±0.09, 0.17±0.03, 1.10±0.06, 0.08±0.11 and 0.80±0.14, 2.50±0.07, 0.50±0.05, respectively. Compared with the PSF+4-HNE group, the relative expression of pAkt, Nrf2, and HO-1 proteins in the LY294002+4-HNE+PSF group decreased significantly, with significant differences ( t=17.342, 16.813, 18.794; P<0.001). Conclusion:PSF upregulates the expression of HO-1 by activating the phosphatidylinositol 3 kinase/Akt pathway and inhibits cell proliferation, migration, and lumen formation induced by low concentrations of 4-HNE.

17.
Chinese Journal of Nephrology ; (12): 446-455, 2023.
Article in Chinese | WPRIM | ID: wpr-994998

ABSTRACT

Objective:To investigate whether caffeic acid phenethyl ester (CAPE) would improve peritoneal dialysis (PD)-associated peritoneal fibrosis by alleviating oxidative stress through activating nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway.Methods:Thirty-two male Sprague-Dawley rats were randomly divided into four groups by the random number table: control (CON) group (0.9% normal saline 20 ml/d intraperitoneal injection), CAPE group (0.9% normal saline 20 ml/d+CAPE 10 mg·kg -1·d -1 intraperitoneal injection), PD group [4.25% glucose peritoneal dialysis fluid (PDF) 20 ml/d intraperitoneal injection with lipopolysaccharide 0.6 mg/kg intraperitoneal injection at day 1, 3, 5 and 7], and PD+CAPE group (CAPE 10 mg·kg -1·d -1 intraperitoneal injection in addition to PD group), with 8 rats per group. On day 28, rats were euthanized after peritoneal equilibration test, and then the parietal peritoneum and omentum were collected for follow-up tests. To further investigate the mechanism, primary peritoneal mesothelial cells (PMCs) of rats were isolated and cultured. The PMCs were stimulated with 2.5% glucose PDF and added with 5 μmol/L CAPE intervention. The Nrf2 inhibitor (ML385) was used to identify whether CAPE protected PMCs from PDF by activating the Nrf2/HO-1 pathway. Histopathological staining was used to detect structural changes of the peritoneum, and immunohistochemical analysis was performed on cleaved caspase-3, Bax, α-smooth muscle actin (α-SMA), fibronectin (FN), and typeⅠ collagen (Col-Ⅰ) protein. Western blotting was used to detect the protein expression of α-SMA, FN, transforming growth factor-β1 (TGF-β1), HO-1 and nuclear Nrf2 (N-Nrf2). The apoptosis detection kit was used to detect apoptosis and flow cytometry was used to detect reactive oxygen species (ROS) in PMCs. The malondialdehyde (MDA) and superoxide dismutase (SOD) activity detection kit were used to detect MDA content and SOD activity. Cell immunofluorescence was used to analyze the protein expression of Nrf2 in PMCs. Results:Compared with the CON group, the PD group had thicker peritoneum, and the expression levels of cleaved caspase-3, Bax, α-SMA, FN, Col-Ⅰand MDA in peritoneum were significantly higher, while HO-1, N-Nrf2 protein expression and SOD activity were lower (all P<0.05). Compared with the PD group, the parietal peritoneum morphology of CAPE+PD group was improved, accompanied by reduced cleaved caspase-3, Bax, α-SMA, FN, Col-Ⅰ protein expression, and MDA content, while N-Nrf2, HO-1 protein expression, and SOD activity were higher (all P<0.05). Compared with the CON group, the PD group had significantly lower ultrafiltration volume and higher peritoneal permeability (both P<0.05). After CAPE intervention, the peritoneal transport function of the rats was significantly improved ( P<0.05). In cultured PMCs, PDF inhibited nuclear translocation of Nrf2 and protein expression of HO-1, and upregulated intracellular ROS level. In addition, PDF increased cell apoptosis and the protein expression levels of α-SMA, TGF-β1 and FN (all P<0.05). CAPE activated nuclear translocation of Nrf2, increased HO-1 protein expression, downregulated intracellular ROS level, and partially reversed PDF-induced cell apoptosis and epithelial- mesenchymal transition (all P<0.05). The protective effects of CAPE on PMCs were partially abolished by ML385 (all P<0.05). Conclusions:CAPE can reduce PD-induced PMCs apoptosis and epithelial-mesenchymal transition by attenuating oxidative stress, and significantly improve peritoneal fibrosis and ultrafiltration function. The beneficial effects of CAPE on peritoneum are related to activation of Nrf2/HO-1 pathway.

18.
Chinese Journal of Anesthesiology ; (12): 736-740, 2023.
Article in Chinese | WPRIM | ID: wpr-994256

ABSTRACT

Objective:To evaluate the role of nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in edaravone-induced attenuation of long-term cognitive impairment caused by long-time sedation with propofol in the neonatal rats.Methods:Eighty SPF healthy newborn Sprague-Dawley rats of both sexes, aged 7 days, weighing 15-20 g, were divided into 4 groups ( n=20 each) using a random number table method: control group (group C), propofol group (group P), edaravone+ propofol group (group EP) and Nrf2 inhibitor ML385+ edaravone+ propofol group (group MEP). Propofol 75 mg/kg was intraperitoneally injected once a day for 7 consecutive days in P group, EP group and MEP group, respectively, while the equal volume of medium/long chain fat emulsion injection was intraperitoneally injected in C group. Edaravone 3 mg/kg was intraperitoneally injected at 30 min before each propofol injection in EP and MEP groups, and ML385 15 mg/kg was intraperitoneally injected simultaneously in group MEP. The spontaneous activity was evaluated by the open field test on day 29 after birth, and the cognitive function was assessed by Morris water maze test on days 30-34 after birth. The rats were sacrificed after the end of water maze test, and brains were removed and hippocampal tissues were obtained for determination of reactive oxygen species (ROS) levels (by flow cytometry), superoxide dismutase (SOD) and malondialdehyde (MDA) levels (by enzyme-linked immunosorbent assay) and expression of Nrf2 and HO-1 (by Western blot) and for microscopic examination of the pathological changes in the hippocampal CA1 area (using HE staining). Results:There was no significant difference in the speed, distance and time of stay at the center of the open field among the four groups ( P>0.05). Compared with C group, the escape latency was significantly prolonged, the number of crossing the original platform quadrant was reduced, the levels of MDA and ROS were increased, the activity of SOD was decreased, the expression of Nrf2 and HO-1 was down-regulated ( P<0.05), and the pathological injury was observed in the hippocampal CA1 region in group P. Compared with P group, the escape latency was significantly shortened, the number of crossing the original platform quadrant was increased, the levels of MDA and ROS in the hippocampus were decreased, the activity of SOD was increased, the expression of Nrf2 and HO-1 was up-regulated ( P<0.05), and the pathological injury in the hippocampal CA1 region was significantly alleviated in EP group. Compared with EP group, the escape latency was significantly prolonged, the number of crossing the original platform quadrant was reduced, the levels of MDA and ROS were increased, the activity of SOD was decreased, the expression of Nrf2 and HO-1 was down-regulated ( P<0.05), and the pathological injury was aggravated in the hippocampal CA1 region in MEP group. Conclusions:The mechanism by which edaravone attenuates long-term cognitive impairment caused by long-time sedation with propofol is related to activation of Nrf2/HO-1 signaling pathway and inhibition of oxidative stress in the neonatal rats.

19.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 584-591, 2023.
Article in Chinese | WPRIM | ID: wpr-992137

ABSTRACT

Objective:To explore the effect and mechanism of diosmetin (Dio) on neuronal ferroptosis in rats with bacterial meningitis (BM).Methods:Male SD rats aged 6-7 weeks of SPF grade were selected for the experiment. The BM model was established by injecting group B hemolytic streptococcus into the cisterna magna of cerebellum. Sixty BM model rats were successfully modeled and divided into model group, low-dose Dio group, medium-dose Dio group, high-dose Dio group and inhibitor group according to the random number table method, with 12 rats in each group. Another 12 weight-matched rats were taken as the control group.The rats in the low-dose Dio group, medium-dose Dio group, high-dose Dio group and the inhibitor group were intragastrically administered with Dio at 50 mg/kg, 100 mg/kg, 200 mg/kg and 200 mg/kg, respectively. The rats in the control group were intragastrically administered with an equal volume of 0.9 % sodium chloride solution. On the day of intragastric administration, the rats in the inhibitor group were intraperitoneally injected with SIRT1 pathway inhibitor EX527 (10 mg/kg), and the rats in the other groups were injected with an equal volume of 0.9% sodium chloride solution. The above interventions were performed once a day for 28 consecutive days. Loeffler neurological score was used to evaluate the neurological impairment in rats. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in cerebrospinal fluid of rats were detected by ELISA. The number of white blood cells in cerebrospinal fluid was detected by a blood cell analyzer. Glutathione (GSH) was detected by micro-enzyme labeling method, malondialdehyde (MDA) was detected by thiobarbituric acid colorimetric method, reactive oxygen species(ROS) was detected by colorimetry, and Fe 2+ level was detected by ferrozine method. Hematoxylin-eosin staining, Prussian blue staining and TUNEL staining were used to observe the pathological damage, iron accumulation and apoptosis in the hippocampus, respectively.Western blot was applied to measure the expression of transferrin (Tf), proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (Bax), caspase-3 and SIRT1/Nrf2/HO-1/Gpx4 signaling pathway proteins. Graphpad Prism 9.0 was used for data analysis. One-way ANOVA was used for statistical analysis, and SNK- q test was used for further pairwise comparisons. Results:(1) There was a statistically significant difference in neurological function scores among the 6 groups of rats ( F=125.451, P<0.001). The neurological function score of the model group was lower than that of control group, while the neurological function scores of the low-dose Dio group, medium-dose Dio group, and high-dose Dio group were higher than those of the model group (all P<0.05). The neurological function score of the inhibitor group ((2.57±0.26)) was lower than that of high-dose Dio group ((4.34±0.48)) ( P<0.05). (2) There were statistically significant differences in the levels of IL-6, TNF-α and the number of white blood cells in the cerebrospinal fluid of rats among the 6 groups ( F=127.817, 102.413, 180.967, all P<0.001). The levels of IL-6, TNF-α and the number of white blood cells in model group were higher than those of control group(all P<0.05). The levels of IL-6, TNF-α and the number of white blood cells in low-dose Dio group, medium-dose Dio group and high-dose Dio group were lower than those of model group (all P<0.001), and those in inhibitor group were all higher than those in high-dose Dio group(all P<0.001). (3) There were statistically significant differences in iron deposition rate and neuronal apoptosis rate among the 6 groups of rats ( F=90.857, 88.835, both P<0.001). The iron deposition rate ((18.37±3.14)%) and neuronal apoptosis rate ((27.58±2.63)%) in the inhibitor group were higher than those in the high-dose Dio group ((6.35±1.08)%, (14.02±1.87)%) (both P<0.05). (4) The levels of GSH, ROS, MDA, and Fe 2+ in the hippocampus of the 6 groups of rats showed statistically significant differences ( F=54.465, 106.453, 55.969, 105.457, all P<0.001). The GSH content in the inhibitor group ((103.48±8.76) mmol/g) was lower than that in the high-dose Dio group ((133.97±10.54) mmol/g), while the contents of ROS, MDA, Fe 2+ ((225.17±16.32) μmol/mg, (10.73±1.58) μmol/mg, (62.71±5.43) μg/g) were higher than those of the high-dose Dio group ((131.87±11.67) μmol/mg, (4.35±0.87) μmol/mg, (34.86±2.95) μg/g) (all P<0.05). (5)There were statistically significant differences in the protein levels of Tf, PCNA, Bax, caspase-3, SIRT1, Nrf2, HO-1 and Gpx4 in the hippocampus of the 6 groups of rats ( F=120.179, 107.568, 157.265, 98.031, 90.932, 52.283, 59.424, 114.539, all P<0.001). The protein levels of Tf, Bax and caspase-3 in the hippocampus of inhibitor group were higher than those of the high-dose Dio group, while the protein levels of PCNA, SIRT1, Nrf2, HO-1, Gpx4 were lower than those of the high-dose Dio group (all P<0.05). Conclusion:Diosmetin can activate SIRT1/Nrf2/HO-1/Gpx4 signaling pathway, thereby inhibiting neuronal ferroptosis in BM rats.

20.
Chinese Critical Care Medicine ; (12): 244-249, 2023.
Article in Chinese | WPRIM | ID: wpr-992011

ABSTRACT

Objective:To investigate whether silence information regulator 1 (SIRT1) could regulate nuclear factor E2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathway and its role in acute lung injury (ALI) in sepsis rats.Methods:Twenty-four male Sprague-Dawley (SD) rats were randomly divided into sham operation group (Sham group), cecal ligation and puncture (CLP) induced sepsis group (CLP group), sepsis+SIRT1 specific agonist group (CLP+SRT1720 group,10 mg/kg SRT1720 was intraperitoneally injected 2 hours before CLP), sepsis+SIRT1 specific inhibitor group (CLP+EX527 group, 10 mg/kg EX527 was intraperitoneally injected 2 hours before CLP), with 6 rats in each group. The rats were killed 24 hours after modeling and their lung tissues were taken for pathological score (Smith score), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukins (IL-6, IL-1β), and SIRT1, Nrf2 and HO-1 mRNA and protein expression were detected.Results:The lung tissue of the CLP group mice was severely damaged, the alveolar interval was widened and a large number of inflammatory cells infiltrated, and there was visible pulmonary capillary hyperemia. The Smith score, the levels of TNF-α, IL-6, IL-1β, MDA and 8-OHdG were significantly increased, the levels of SOD, GSH, SIRT1, Nrf2 and HO-1 were significantly decreased in CLP group. After using SIRT1 specific agonist, the lung injury in CLP+SRT1720 group was significantly alleviated compared with that in CLP group, Smith score and lung tissue TNF-α, IL-6, and IL-1β levels were significantly decreased [Smith score: 2.83±0.75 vs. 5.67±0.52, TNF-α (ng/L): 36.78±5.36 vs. 66.99±5.44, IL-6 (ng/L): 23.97±3.76 vs. 45.70±4.16, IL-1β (ng/L): 16.76±1.39 vs. 39.64±2.59, all P < 0.05], SOD activity and GSH content increased [SOD (kU/g): 115.88±3.31 vs. 101.65±1.09, GSH (μmol/g): 8.42±0.81 vs. 5.74±0.46, both P < 0.05], MDA and 8-OHdG contents decreased [MDA (μmol/g): 5.24±0.33 vs. 9.86±0.66, 8-OHdG (ng/L): 405.76±8.54 vs. 647.12±10.64, both P < 0.05], the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were increased [SIRT1 mRNA (2 -ΔΔCT): 1.49±0.15 vs. 0.64±0.03, Nrf2 mRNA (2 -ΔΔCT): 1.19±0.08 vs. 0.84±0.02, HO-1 mRNA (2 -ΔΔCT): 1.80±0.41 vs. 0.64±0.11, SIRT1 protein (SIRT1/β-actin): 1.03±0.06 vs. 0.52±0.05, Nrf2 protein (Nrf2/β-actin): 1.14±0.10 vs. 0.63±0.05, HO-1 protein (HO-1/β-actin): 1.01±0.11 vs. 0.73±0.03, all P < 0.05]. The lung injury in CLP+EX527 group was more severe than that in CLP group, Smith score and lung tissue TNF-α, IL-6, IL-1β levels were significantly increased [Smith score: 8.00±0.89 vs. 5.67±0.52, TNF-α (ng/L): 87.15±4.23 vs. 66.99±5.44, IL-6 (ng/L): 66.79±2.93 vs. 45.70±4.16, IL-1β (ng/L): 58.99±2.12 vs. 39.64±2.59, all P < 0.05], SOD activity and GSH content decreased [SOD (kU/g): 72.84±3.85 vs. 101.65±1.09, GSH (μmol/g): 3.30±0.67 vs. 5.74±0.46, both P < 0.05], the contents of MDA and 8-OHdG were increased [MDA (μmol/g): 14.14±0.70 vs. 9.86±0.66, 8-OHdG (ng/L): 927.66±11.47 vs. 647.12±10.64, both P < 0.05], the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were decreased [SIRT1 mRNA (2 -ΔΔCT): 0.40±0.07 vs. 0.64±0.03, Nrf2 mRNA (2 -ΔΔCT): 0.48±0.07 vs. 0.84±0.02, HO-1 mRNA (2 -ΔΔCT): 0.27±0.14 vs. 0.64±0.11, SIRT1 protein (SIRT1/β-actin): 0.20±0.05 vs. 0.52±0.05, Nrf2 protein (Nrf2/β-actin): 0.45±0.01 vs. 0.63±0.05, HO-1 protein (HO-1/β-actin): 0.36±0.08 vs. 0.73±0.03, all P < 0.05]. Conclusions:In the rat model of ALI induced by sepsis, SIRT1 can regulate the activation of Nrf2/HO-1 signaling pathway, upregulate the expression of downstream antioxidant enzymes, reduce oxidative stress injury, and then alleviate the ALI induced by sepsis in rats.

SELECTION OF CITATIONS
SEARCH DETAIL